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1. Introduction

In this paper we consider a hazardous inspection model, We are
given a device which operates throughout a number of periods and which
in each period is subject to failure. Failure of the device is directly
observable. Prior to failure the device will enter a state in which it
is functioning, but in an impaired manner. This state can be detected
only by performing an inspection., Once the machine is known to be in the
impaired state, appropriate action may be taken to prolong the remaining
life of the device, In this respect inspection is valuable, However,
the act of inspecting the device when it is not impaired may itself
cause the device to become impaired. In this respect inspection is
hazardous., This paper deals with the determination of inspection policies
which maximize the expected lifetime of the device.

The above model is very appropriate for situations where the cost
of inspection is negligable relative to the cost of failure, One important
example is the use of X-rays to detect cancer., Currently there is con-
siderable controversy as to whether X-rays may themselves cause cancer and,
granting at least their potential for causing cancer, whether or not

they should be employed. (See [3] for a detailed list of references on

this subject.) Another prime example is the inspection of nuclear reactors.

Since the largest single cause of malfunctions is human error [11], a
fundamental question is do human inspections create more problems than
they solve,

A number of authors have studied inspection models [1}, (5], [6],
(71, (8]. These authors have all assumed a cost structure for inspection

and repair, and have sought to derive inspection and repair policies which
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minimize the overall cost of operation, In none of these papers was

inspection assumed to have any effect (good or bad) on the true state of

the device., Wattanapanom and Shaw [10] consider a hazardous inspection

model in which the device has an exponential failure distribution in the

absence of any inspection. Each inspection either causes immediate failure
or else increases the failure rate, They derive algorithms for finding

: inspection policies which minimize the overall operating cost,

2. The Model
Consider a device whose operation can be classified into one of
three categories: fully functional; functional, but impaired; and failed.
The failed state is directly observable but one can distinguish the partially
functional state from the fully functional state only by performing an
E inspection, Inspection is perfect (i.e., the true state is always revealed)
and instantaneous, u
The inspection model will be formulated as a Markov decision process
[4]. We let Xn denote the true state of the device at the start of

period n (before inspection), where the possible states are

: True State Description g
i ] 1 fully functional (OK) |
i e Section
| 4 Seien !; 2 undetected partial failure (UP)
: ! ) o
] plils efte 3 detected partial failure (DP)
) L failed (F).
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Let a denote the action taken at time n, where the possible actions

are

Action Description
0 do not inspect
1 inspect .

We make the usual Markov assumption that the future is in some sense

independent of the past. Specifically we assume that

Pr{X  , = jlxk, &, k=1,2 ..., 8]

1}
.
»

= Pr{Xn+1

Define

Qij(a)=Pr{xn+1=jlxn=1,a =8}’ a 0, 1; j:l...

We take the one-step transition matrices Q(0) and Q(l) to be as follows,

Q(0) Q(1)
(do not inspect) (inspect)
(oK)  (up) (DP) (F) (OK) (UP) (DP) (F)
(OK) l-ao % 0 0] (OK) Lo, | 0 (0]
(uP) 0 1-8 0 B8 (UP) 0 o |1-B| 8

(DP) 0 0 l-y Y (DP) 0 0 I=v 1 ¥

1 (F) 0 0 o 11




We assume that 0 < ab’ al, B, r <1 and that al > Qb and B > r¢

(see below).

Note the following features about the model,

1. Once a device enters a state, it never returns to a lower-numbered
state,

2. Once a device leaves state 1, the transition probabilities are the
same regardless of whether or not it is inspected.

3. Once the device enters state 3 or 4, the decision process is completed,
because the future evolution of the device is independent of the actions
taken. (This is also true once the device enters state 2; however,
state 2 is indistinguishable from state 1 to an observer.)

4., The assumption that al > ao means that inspection is mure hazardous
to a fully functional device than is no inspection,

5. The assumption that B > y means that once partial failure has been
detected, measures can be taken which reduce the periodic probability

of failure of the device,

The information available to anobserver is whether or not the
system is in one of the states ({1 2} or state 3, or state L4 and if
in state 1 or 2, how many periods have elapsed since the last inspection.
[Note that the last inspection must necessarily have indicated the device

to be OK.] Thus we define the following observed states.




Observed State Description

-1 device failed
0 detected partial failure
j 21 device not failed; last inspec-

tion OK; last inspection j
periods ago

The observed state transitions also have the Markov property. We let Zn

denote the observed state of the device at period n and
Pij(a) = Pr[Zn+1 = j]Z =1, a = a} 5 a = 0’ 1,' i,j _>. -1 .

Also let

Kj=Pr[Xn+j=2|Xn= l,a =18a  =00<k<j},

Lj=Pr{xn+j=1|xn=1, =l 8 =0, 06<k<3), J=1,2,
and

N, = K.+ L.

i S QB

Note that Kj/Nj is the probability that the true state is 2 (UP) given

the observed state is j and Lj/Nj is the probability that the true

state is 1 (OK) given the observed state is j.




Proposition 1,

A,

do not inspect

1, 3=~-1
i) P_1 j(0) =
2 o, otherwise
¥ A==l
ii) Po’j(o) =¢lr, =0
o, otherwise
KiB/Ni’ j=-1
iii) Pi,j(o) = (L1+Ki(1‘5))/N1 5§ = 1sl,
0, otherwise,
inspect
L, ) =<1
i) P_1 j(1) =
) o, otherwise
¥y F=el
ii) Po,j(l) = {1y, J=0
o, otherwise
K.B/N,, j=-1
K,(1-B)/N;, j=0
iii) P1 j(1) =
b o
Li/Ni’ j=1
0 otherwise,

b




Proof., Parts A,i-ii and B.i-ii are obvious;

P 0) = Pr(R , =k X = 2l = i}

i -1(

2

Pr(X = ulxn = 2).Pr(X_ = 2|zn AL BKj/Nj :

] Also, it is clear that Pij(o) =0 for all j # -1, i+l, so that
P, 1(O) + P (0) = 1. This proves part A.iii, To prove part B.iii note &
i,- i,i+1 |
that |4
i
{4
By D) = BB, = b, X 2lz = i) |
= Pr(X_, = ulxn = 2)-Pr(X_ - 2|zn = £} = axi/ni : i
3 3
3
Also {
¥
14
91,0(1)= Pr(X =3 X =2z <i,a -1
= Pr[xn+1 = 3|Xn = 2, an = I}OPr{xn = 2|Zn — i

(1-B) K/N, .

Since Pi j(1) = 0 for all other j except j = 1, the proof is complete. O
s

Proposition 2,

i-1
A, L, = (1-a1)(1-a0) ’ i2>1.




k
I e

izl,ao,éa

| B'
| : -1 fop 128 g bdy,
i) K, = al( T R ao( 1-011)(1-B) ? (T.'fa_
, 1) Kk = a(1p) it s a(ra) (-8 - (o) /()
1i1) K, = o l-on)i'1 + (1-1) ay(1-0)(1-0) e :

1 Proof.
A, L =Pr(X =1 0<k< ik =1, a=1,a ,k =
i-1
= (1-041)(1-a0) .
B. K, =Pr(k =2 0<k< ilx =1, a =1,a,-=

1
+ 52 PriX ,=10<k<g X .= 2,

t<3silx -1,a =1,a
i

o (1-8) "t 4 I, (1)1 L) ®

i-£
A ao( I'B)

i-2 l-o \k

i

o ( 1-(3)1'1 + ay( 1-0‘1)(1'5)1-2 Z (Tég) 5

[Note: By convention, the summation in B,i is zero when i - 2 < 0.]

0, 0<k<i)

0, 0 <k < i)

=0, 0<k<i)

’

This proves (i) from which (iii) follows directly. To prove (ii), note that




L~ ((1-ay)/(1-8))t 7t

i-1 i-2
K, = @ (1-8) 77 + ay(1-0))(1-B)

a

Multiplying the numerator and denominator of the second term by (1-B)

yields

(11 - (10!
(]"ﬁ) g (l-ao)

i-1
= o 1-8) + ao( 1-al)
from which (ii) follows directly. o

To allow for the possibility of alternate failure modes, competing
risks and the like, we will assume that every period there is a probability
of secondary failure 1-5, We allow the possibility that & = 1 in order
to cancel this feature of the model,

It turns out that the parameter © acts almost exactly like an
ordinary discount factor. Clearly, this aspect of the model could have
been incorporated into the transition matrices Q(-) directly. However,
our treatment shows the discount-factor-like nature of ©® and keeps the
transition matrices Q(-) more simple.

We now consider the main objective of this paper, the determination

of an inspection policy which yields the maximal expected life of the device.

Let V(s,n) denote the maximal expected remaining time until failure of
the device given the device currently is in (observed) state s and the
device is to be destroyed n periods in the future (if it survives that

long). Let V(s) denote the maximal expected remaining time until failure

T~ (1-a)/(1-B) p g R

P P P R T




of the device given it is currently in (observed) state s. As is rather

generally true of dynamic programs, the finite horizon optimal values
V(s,n) converge to the infinite horizon optimal values V(s) as n

approaches infinity [9]. That is

V(s) = lim V(s,n) , s=-10,1

n — o

Seves (1)

The recursive relations among the V's are given below.

Proposition 3.

A, TFinite Horizon

i) V(s,0) = O s

i) V(-1,n) = 0, V(0,n) = (1-(8(l-y))")/(1-8(1-y)) , n

1}
p—
no

iii) V(s,n) = 1 + & max(K_(1-B) v(o,n-1)/NS + L, V(1,0-1)/N_,

(K (1-8) + L) v(s+1,n-1)/Ns) s S >1,

B. Infinite Horizon

i) ¥(-1) = 0, V(0) = 1/(1-8(1-7)),

i) V(s) = 1 + ® max(K_(1-) v(o)/Ns + L V(1)/N,

(K (1-B) + L) V(s+)/N),  s>1.

-1,8,1,...

s |
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Proof,

oo
V(O,n) = Y Pr{remaining life of device exceeds k|device
k=0

currently in true state 7}

n-1 K
Y, (3(1-7))
k=0

(1 - (8(1-y))M)/(1 - 8(1-7))

The formula for V(0) follows directly from the above by taking the limit
as n approaches infinity.

By the so-called principle of optimality of dynamic programming [2],

V(s,n) = max e ;, st(a) V(j, n-1)} . (2)
a=20,1 j=-1

Recalling Proposition 1, the recursive formula for V(s ,n) follows
immediately., The recursive formula for V(s) follows from taking limits

in the above [9]. a

3. Preliminary Analysis

We begin the analysis of the model by investigating the behavior

of the quantities Ki/Ni and Li/Ni'




Proposition 4.

i) Ef ab > B, then Ki/Ni is strictly increasing in i, and

Li/Ni and (Ki(l-B) + Li)/Ni are strictly decreasing in i.

ii) If &, = %B, then K/N,, Li/Ni’ and (Ki(l-ﬁ) + Li)/Ni are

constant in i,

iii)  If Qb < alﬂ, then Ki/Ni is strictly decreasing in i, and

Li/N and (Ki(l-ﬁ) + Li)/Ni are strictly increasing in i,

i

Proof.

Ki/Ni & Ki-l/N
so Ki/Ni is increasing, constant, or decreasing according to whether

Ki Li_1 - Ki-l Li is positive, zero, or negative,

|
-
1
Q
—
~
o)
Q
o
~—
=
1
n
—
Q
P
oy
L)
w
~
[
L}
—
+
09
—~
-
1
Q
-
~~
—
-
1
W
~
=
1
n
[
——
HI
~——

; i-2 ;1-a, k
(l-al)(l-ao)i'z (1-gyt* {ai( 1-8) + qy(l-ay) ¥ (T__o)
k=0

1-a i-3 1- . k
0 0

I

(1-0,)(1-0) "% (1-8)*% (a-ap)

12




This proves the assertions regarding Ki/Ni' The other assertions follow

directly from the formulas

L./N

/B = 1-KJ/N

i

Using the above proposition, we can now compare V(s,n) and V(s)

for various values of s,

Theorem 1.
HYS e % 2> B, then V(s,n) and V(s) are non-increasing in s > 1,

1.

v

i1y~ TE &, < B, then V(s,n) and V(s) are non-decreasing in s

Proof. (i) For n = 1, V(s,n) is constant for s >0 and therefore
non-increasing. Now using induction assume that V(s, n-1) 1is non-increasing
in s > 1. The two arguments of the maximization operator in the recursive

expression for V(s,n) (Proposition 3) are

K (1-B) V(o, n-1)/Ns + L, V(1, n.1)/Ns

= (1-B) (0, n-1) + L_(V(1, n-1) - (1-B) V(0,n-1))/N_, (3)

and

(K (1-B) + L) V(s+l, n-1)/Ns . (4)




By Proposition L, (Ks(l-a) + Ls)/Ns is decreasing in s and by hypothesis

V(s, n-1) 1is non-increasing in s. Therefore (4) is non-increasing.

Again by Proposition 4, LS/N8 is non-increasing and by Lemma 2 which

follows V(1, n-1) -(1-p) V(0, n-1) > 0. Thus (3) is also non-increasing

and so V(s, n) 1is non-increasing in s > 1. Since V(s) = lim V(s,n),
n 95w

V(s) must be non-increasing in s > 1 also.

The proof of part (ii) is identical except for the use of part (iii)

of Proposition L4 instead of part (i), o
Lemma 1.
i) Vv(o,n) = 1 + ®(1l-y) V(0, n-1), n > 0.

ii) Vv(0) = 1 + &(1-y) V(0).

Proof. These results follow immediately from Proposition 3. O
Lemma 2,
vV(1l,n) > (1-B) V(O,n) , n>0.

Proof. The proof is by induction. For n = 0,1 the result is clearly

true, Now assume the result holds for n-1, By Proposition 3

V(1,n) > 1 + 5(K,(1-B) v(o,n-1)/N1 + L, V(1, n-l)/Nl)

v

1+ 8(K,(1-B) V(0, n-1)/N; + L,(1-) V(O, n-1)/N1)
> 1+ 5(1-p) V(0, n-1)

> (1-B) [1 + 8(1-y) V(0, n-1)] .

1

I




Thus by Lemma 1,

v(1,n) > (1-8) V(0,n) .

Theorem 2,

1)y If rsap and o > B, then V(0,n) >V(1l,n) and V(0) >V(1).

0
ii) If y > B, then V(0,n) <V(l,n) and V(0) < V(1).

Proof. (i) For n = 1 the result is trivial, Now assume

v(0,n-1)

>V(1l, n-1). Since oy > B, V(s, n-1) is non-increasing in s > 1

by Theorem 1, so via Proposition 3

V(1,n) < 1+ 8(Ky(1-8) + L)) V(0, n-1)/N,

IA

1+ 5(1-048) V(0, n-1)

A

1 + &(1l-y) V(O, n-1) .

Thus by Lemma 1, V(1,n) < V(0,n).

(ii) Clearly V(0,n) < V(1l, n) holds for n = L.

that V(0, n-1) < V(1, n-1), By Proposition 3 and Lemma 1,

Now assume

- .




v(1,n) > 1 + 8(K (1-B) + L) V(0, n-1)

>1 4+ 5(1 - ala) v(0, n-1)
>1+58(1-y)V(0, n-1) = V(O,n) .
This completes the proof for the finite-horizon optimal values. The

results regarding the infinite-horizon optimal values follow from

equation (1),

In the case omitted by Theorem 2, & < ala and Ob <,ala, it can

be shown that neither the inequality V(O,n) > V(1l,n) nor the inequality

v(o,n) < V(1l,n) holds in general.

4. Determination of Optimal Inspection Policies

In this section we determine the form of the optimal inspection

policies for various ranges of the parameters.

F Theorem 3. 1) - EE ab‘z alﬁ and y < ala, then the optimal inspection
policy for both the finite and infinite horizon problems is to inspect
every period, ﬁ

(1t) If£ Gbls alﬁ and 1 > Qiﬁ, then the optimal inspection

policy for both the finite and infinite horizon problems is to never inspect,

16




Proof. The optimal action when the device is in state s facing an n

period horizon is that action which achieves the maximum in Proposition

3.,A.iii. Let

D(s,n) = K_(1-B) V(0, n-1/N_ + L_ V(1, n-1)/N_

- (K (1-B) + L)) V(s+l, n-1)/Ns A

Then when the device is in state s facing a horizon of n periods it
is optimal to inspect if D(s,n) > 0 and not to inspect if D(s,n) <O.
When Ob.z B and y < als, V(s,n) is non-increasing in s >0 for all
n by Theorems 1 and 2, Thus D(s,n) >0 for all s,n>1 and it is
optimal to inspect. When Qb‘s ala and y > alﬁ, V(s,n) is non-decreasing
in s >0 for all n by Theorems 1 and 2. Thus D(s,n) <0 for all
s,n > 1 and the optimal policy is not to inspect. This completes the
finite horizon proof.

The optimal action when the device is in state s facing an infinite

horizon is the action corresponding to the argument which achieves the

maximum in Proposition 3.B.ii (see [9]). To be more specific, let

D(s) = K (1-B) V(o)/Ns + L V(1)/Ns
- (KS(I-B) + Ls) V(s+1)/Ns ‘

Then when in state s it is optimal to inspect if D(s) > O and not to
inspect if D(s) < 0. The remainder of the proof is identical to the
finite horizon case, o

The lemma which follows provides the basis for determining the form

of optimal inspection policy when Ob > ala and y > als.

17




Lemma 3, If a0>ale and Y>°‘1B, then for all n=1_ 2, ...

) - |

i) D(s,n) and D(s) are non-decreasing in s,

ii) D(s+l, n-1) By (l-ao) D(s, n-1) N, 20, (n> 1),
iii) o (1-B) V(0, n-1) + (1-0) V(1, n-1) - (1-04p) V(2, n-1) > 0.

Proof. The proof is by induction on n. The inequalities (ii) and (iii)

are included only because they are necessary in the proof of part (i). Let

G(n) = ay( 1-8) V(0, n-1) + (1-00) v(1, n-1) - (1-;B) v(2,n-1) ,
n= 1, 2, - s
and
H(s,n) = D(s+l, n-1) 8™ (1-0y) D(s, n-1) Ng .

It is easy to verify that D(s,1) = D(s,2) =0 for s =1, 2, .... Also,
G(l1) = 0 and G(2) = (Otl-ao)ﬁz 0. Finally, note that H(s,2) =0
[H(s,1) is undefined]. Thus the finite-horizon portion of the lemma

holds for n = 1, 2, Now assume the lemma holds for n = N-1, where

N > 3. Let

s*(n) = min{s > 1:D(s,n) > 0}

where s*(n) = 4o if D(s,n) <O for all s, Since D(s, N-1) is

assumed to be non-decreasing in s, D(s, N-1) 1is non-negative if and

only it s > s¥(N-1). Thus




V(s, N-1) = L+ 5(K (1-8) + L)) V(s+l, N-z)/us

’

for s < s¥(N-1) (%)
and
V(s,N-1) = 1+ 5K _(1-p) V(O, N-E)/Ns
+ 8L V(1, N-2)/N_, for s > s¥(N-1)

In the remainder of the proof we will make use of the following easily

verified formulas for Ks’Ls’ and Ns without mention:

K

]

s+1 (I'B)Ks + Bl

s+l (1'ab)Ls ’ (6)

Ns+1

i}

(l-B)Ks + B

Case 1: s¥(N-1) = 1: 1In this case, by equations (5) and Lemma 1

D(s,N) = {Ks(l-ﬂ) {1+ ®(1-y) V(0, N-2))
+ L L+ 6K1(1-B) v(o, N-a)/N1 + 8L, v(1, N-2)/N1]
- (Ry(1-B) + L) [1 + 8K ,(1-B) V(0O, N-2)/N_ ,
s 8L (1, N-2)/ls+1]} /N, ,
= 8(1-p) (B-r) V(0, N-2) K/N_

- 8(@;-0) [V(1,N-2) - (1-B) V(O,N-E)jLs/Ns ‘ (7)

19




Recalling Lemma 2, Proposition L and cthe assumptions that B > y and
a > @, we see that D(s,N) is non-decreasing in s.
Case 2: s*(N-1) > 1: In this case we first show that D(s,N) 1is non-

decreasing in the ranges [1, s¥(N-1) - 1) and [s*(N-1) - 1, w).

1 <s < s*¥(N-1) - 1: In this range of s, by equations (5) and Lemma 1

D(s,N) - {Ks(l-a) [1+5(1-r) V(0, N-2)] + L_[1 + B(K (1-B)+L)) V(2,N-2)/N ]

T

- (Ky(1-B) + L) [+ B(Ky,(1-B) + Ly ) W(se2, N-2)/N /N,

5(1-v)(1-B) V(O’N-2)K8/Ns + 8(1-q.B) V(2, N-2) L /N,

- BV(s+2, N-2) N /N

®D(s+1, N-1) N_ /N - 8[(1-B) V(0, N-2) Ks+1/N5 + V(1,N-2)L_ /N ]

+ 8(1-y)(1-B) V(0,N-2) KS/Ns + 8(1l-oyB) V(2, N-2) L /N_

8D(s+1, N-I)Ns+1/Ns + 5(1-B)(B-r) V(0, N-2) Ks/Ns

- 8G(N-1) L/N_ . (8)

Since Ns+1/Ns =1 BKS/NS, this quantity is decreasing when a, > B |

and y > 4B. Also, D(s+l, N-1) 1is non-decreasing by the inductive




assumption and in the range s € [1l, s¥(N-1) - 1) it is negative. Thus

oD(s+1, N-l)NS+1/NS is non-decreasing. Since by the inductive assumption

G(N-1) > 0, the other two terms in the above expression for D(s,N) are

also non-decreasing, D(s,N) is non-decreasing in this range of s.

s¥(N-1) - 1 < s <x: In this range of s, by equations (5) and Lemma 1

D(s,N) = {xs( 1-8) [1 + 8(1-y) V(0, N-2)]
+ L[1 + 8(K,(1-B) + L) V(2, N-2)/N,]
= (KS( I'B) ih LS) [1 + 6K3+1( I‘B) V(O, N-2)/NS+1

+ 8L (1, N-2)/Ns+1]> /N,

8(1-r) (1-B) V(0, N-2)K/N_ + 8(1 - @ B) V(2, N-2)L /N_

- 8(1-B) V(0, N~2)KS+I/NS - BV(1, N-2)Ls+1/Ns 3

5(1-B)(B-r) V(0, N-2)K/N_ - BG(N-1)L_/N_ . (9)

Again by the inductive assumption G(N-1) > 0, so D(s,N) 1is non-decreasing

in this range of s. To show that D(s,N) 1is non-decreasing throughout
[1l,0) all that remains to prove is that D(s¥(N-1) - 1  N) - D(s*(N-1)-2)N) > 0.
Using equations (8) and (9) and denoting s*(N-1) for the time being simply

by 8%,
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D(s*-1, N) - D(s*-2 N)
= 5(1-B)(B-r) V(O, N-2)Ks*_l/Ns*_1 - 8G(N-1)L_, /N,
- BD(s*-1, N-1)N_, /N, . - 8(1-B)(B-v) V(0, N-2)K_, /N, ,

X 6G(N—1)Ls*_2/Ns*_2

= 3(1-B) (B-v) V(0, N-2) [K_, /N | - K, /N ]

+ BG(N-1) [Ls*_g/Ns*_e - Ly /N 4] - BD(s%-1, N-l)Ns*_l/Ns*_z .

Since Ks/Ns is increasing and Ls/Ns is decreasing the first two terms
in the above expression are non-negative. Also, by the definition of
s* = s¥(N-1), D(s*-1, N-1) < 0. Thus D(s*-1 N) - D(s*¥-2 N) > 0. Next

we show that H(s,N) >0 for all s.

Case 1: s*(N-2) = 1: Using equation (7) and simplifying,
H(s,N) = 8(1-)(B-v) V(0, N-3) [K, ; - (L-Q)K.] >0

by Lemma 4 (which follows this proof).

Case 2: s¥(N-2) > 1, s > s¥(N-2) - 1: In this case, using equation (9)
and simplifying,

H(s,N) = 8(1-B)(B-r) V(0, N-3) [K_ ; - (1-@)K] >0

by Lemma L.
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Case 5: s*(N-2) > 1, s+l = s¥(N-2) - 1l: Using equations (8) and (9) and
simplifying

H(s,N) = 5(1-8)(B-y) V(O, N-3) [K_ | - (L-0)K]
- 8(1-ap) D(s+l, N-2) N_ |

The first term in the above is non-negative by Lemma 4. The second term

is non-positive because s+l < s¥(N-2) and so D(s+l, N-2) <O,
Case 4: s+l < sX¥(N-2) - 1: In this case, using equation (8) and simplifying,
H(s,N) = 5(1-8)(B-v) V(0, N-3) [K_ , - (1-G))K.] + BH(s+l, N-1) .
Again the first term is non-negative by Lemma 4. The second term is
non-negative by the inductive hypothesis. Hence we have shown that
H(s,N) >0 for all s.
Next we show that G(N) > 0.
Case 1: s*¥(N-1) <2: By Proposition 3.A.iii,

v(1, N-1) > 1 + 8K,(1-B) V(O, N-2)/N1 + ®Ly V(1, N-2)/N1

Combining this inequality with the expressions for V(0, N-2) and

V(2, N-2) given by Lemma 1 and equationms 5},
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G(N) > ay(1-B) [1 + 5(1-y) V(0, N-2)]

. (l-ao) [1+ 5a1(1-a) V(0, N-2) + b(l-al) v(1, N-2)] (10)

; - (1-o4B) [1 + BK,(1-B) V(O, N.2)/N2 + 8L, V(1, N-2)/N,]
2 (0-a)B + BV(0, N-2) [ay(1-B) (1-r) + @)(1-B)(1-a)) - K,(1-B)]
+ oV(1, N-2) [(I'Qb) (1-a1) - L]

> (al-ao)ﬁ + 5(1-B) (@B - YOb] v(o, N-2) . (11)
Since @, >@; >0 and B>y >0, G(N) >o0.

Case 2: s¥(N-1) > 2, 1In this case

G(N)

ab(l-a) [1+ 8(1-y) V(O, N-2)]
+ (1'06) {1+ 6(K1(1-B) + Ll) v(2, N-2)/N1]

- (L-o4B) [1 + B(K,(1-B) + L) V(3, N-2)/N,]

I

a,(1-B) [1 + 8(1l-y) V(0, N-2)] L
+ (1’°b) [1+8a(1-p) Vv(0, N-2) + 5(1-a,) V(1, N-2)]
- (l-a;B) [1 + BK,(1-B) V(0, N-2)/Ny + BL, V(1, N-2)/N,]

+ (1-0) [1 + BN, V(2, N-2) - 1

- 80 (1-B) V(0, N-2) - B(1-a) V(1, N-2)]

- (1 - 016) (1 + 6N5 v(3, N-2)/N2 -1

- BK,(1-B) V(0, N-2)/N, - BL, v(1,N-2)/N2] :
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Now the first three terms in the above are the same as those in equation

(10), which simplifies to (11). Therefore

G(N) > (@)-0)B + B(1-B) [4B - vy ] V(O, N-2) + BH(1,N) .

Since we have proved above that H(1,N) >0, G(N) > 0.

It remains only to show that D(s) 1is non-decreasing., By equation

(1)

Dfe)y = 1w DB(s.n) .

n - o

Since each D(s,n) is non-decreasing in s, D(s) must be non-decreasing

also, o

Lemma 4, If Ob > a4f then Ks+1-z (l'ab)Ks'

Proof. Case 1: Ob > p: Here

Ko, 1- (l-ao)Ks = (ozo-a)Ks + oL >0 .

Case 2: a, <B: Roui = (1-oz0)1<s = N - PR = N_[a - BKS/NS]. The
sign of the above expression is determined by that of Ob - ﬁKS/Ns and
since this quantity is decreasing all we have to show is that

lim K /N <a/p .

8§ H

From Proposition 2,

5 < s iy e




s-1 s-1
(@y-B) al(%%(;) ca(l-a) (B2 -

0

s-1 s-1
(,-8) al(-}-:-g;) b ay(1-ay) [(-i—:g;) S 1]+ (1-0)) (9,-B)

Thus

slimco K /N, = /B
Theorem 4, If Ob > p and y > alﬁ then
i) if the device is in state s facing an n-period horizon, it is
optimal to inspect if and only if s > s¥(n),
ii) 1if the device is in state s facing an infinite horizon, it is

optimal to inspect if and only if s > s*(«) - min{s:D(s) > 0j.

Proof. This theorem is an immediate consequence of Lemma 3, o




The form of the optimal inspection policy has been analyzed in
every case except ao ~ @B and y < QB. In this case it turns out
that D(s,n) crosses zero at most once and from above (s varying,
n fixed) and so it is optimal to inspect in state s wunless s is

larger than some number 2z¥(n),

Lemma 5. If < ;8 and y < 3, then as s increases D(s,n and
0 1 » p)

D(s) cross zero at most once and from above.

Proof.

D(s,n) = [V(0,n-1) - V(s+l, n-1)](1-B)K/N_

+ [V(1, n-1) - V(s+l, n-l)]Ls/Ns ; (12)

By Theorem 1l.ii, V(s+l, n-1) is non-decreasing in s and by Proposition
L.oiii KS/NS is decreasing and Ls/Ns is increasing. Consider the

interval of s for which V(0, n-1) > V(s+l, n-1). In this range

V(0, n-1) - V(s+l, n-1) is non-negative and is non-increasing. Thus in

this range the first term in (12) is non-increasing. Also V(1, n-1) - V(s+l)
is non-positive and non-increasing, so the second term is also non-increasing,
Thus D(s,n) is non-increasing for s in this range. For the interval of

s for which V(0, n-1) < V(s+l, n-1), both terms in (12) are negative and

thus D(s, n-1) < 0. Thus D(s,n) crosses zero at most once and from
above, as desired. Since D(s) = lim D(s,n) it is easy to verify that
n 3w
D(s) must also have this property. a
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Let

z¥(n)

0]

max{s:D(s,n) > 0]}

and

]

z*(w) = max{s:D(s) > 0]

where we take the maximum over an empty set to be -,

Theorem 5. If ao <a.p and y < QB then if the device is in state s
facing an n-period horizon, it is optimal to inspect if and only if

s < z¥(n), (1 <n<w).

Proof: Follows immediately from Lemma 5. O

5. Conclusions

The form of the optimal policy has been shown to depend in a
simple way upon 7, Qb, and alﬁ. The quantities ab and y have
obvious interpretations; &;8 is the probability that given the device is
currently in observed state 1 (i.e., last inspection one period ago;
results OK) that the device will be failed at the start of the next period.
When y < 4B, observed state O seems intuitively to be a better state to
be in than state 1, and conversely. The relation between ab and Oia
has been shown to determine whether or not the conditional probabilities

Ks/Ns amd Ls/Ns are increasing or decreasing, With these facts noted,

the forms of the optimal policy in the various cases are intuitively sensible,
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The optimal policy when Qb S P and y < Xp perhaps deserves
some special discussion because of its seemingly odd nature. When the

device is in observed state s, inspection may seem intuitively

desirable since if the true state is 2, then in every period in

which the partial failure remains undetected there is a larger probability
of complete failure., When y > @8 this preference for inspection indeed
should hold for s = 1. However, when ab <aB, LS/Ns is increasing,

so that as s increases the probability that the device is in true state
1 (OK) increases also. Of course when the true state is 1, inspection

is not desirable, Thus it seems reasonabl: that once the observed state s
is larger than some number, LS/Ns is sufficiently large to make not
inspecting optimal, Finally we should note that when ab < Q)P and

Yy < B the optimal policy for a device starting out in observed state

s < z¥(w) will be to always inspect, and so the device will never in

the future reach any observed state greater than 1. However if the device

starts out in observed state s > z*(w), then the optimal policy will be to

never inspect.
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